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Abstract—How ”wet” or ”dry” a year is predicted to be has
many impacts. Public utilities need to determine what percentage
of their electric energy generation will be hydro power. Good
water years enable the utilities to use more hydro power and,
consequently, save oil. Conversely, in a dry year, the utilities must
depend more on steam generation and therefore use more oil,
coal, and atomic fuel. Agricultural interests use the information to
determine crop planting patterns, ground water pumping needs,
and irrigation schedules. Operators of flood control projects
determine how much water can safely be stored in a reservoir
while reserving space for predicted inflows. Municipalities use
the information to evaluate their water supply and determine
whether (in a dry year) water rationing may be needed.

Currently a combination of linear regression equations and
human judgment is used for producing these forecasts. In this
paper, we describe a Support Vector Machine based method for
river runoff forecasting. Our method uses Smola/Scholkopf’s Se-
quential Minimal Optimization algorithm for training a Support
Vector Machine with a RBF kernel. The experimental results on
predicting the full natural flow of the American River at the
Folsom Dam measurement station in California indicates that
our method outperforms the current forecasting practices.

Keywords: river runoff forecasting, Support Vector Ma-
chines, sequential minimum optimization

I. INTRODUCTION

Our focus is forecasting the unimpaired river runoff for the
American River watershed at the Folsom Dam measurement
station in California. Water forecasts lead to better planning
and management of California’s water resources. Our goal,
which we achieved, was to outperform the current forecast
practices. The main water resources for California are (1) river
runoff due to rain, (2) river runoff due to snow-melt, and (3)
groundwater.

Due to California’s Mediterranean climate the summer
months are crucial for water usage and allocation. This makes
the unimpaired river runoff forecast for the April-July river
flow the most important river flow forecast. The forecast
made on April 1st for the April-July unimpaired river flow
is used by the Department of Water Resources to allocate
water from the river for the different users e.g. agriculture,
hydro, etc. The American River Basin is 2,150 sq mi (5,568
km) or about half the size of the state of Connecticut [9]. Our
methods use no feature that is specific to the American River
Watershed, therefore they easily generalize to other watersheds
in California. It is more difficult to determine if our methods
would work as well for other states since we are only familiar

with the format and methods of rain/snow measurement for
California.

Our methods improve upon the current predictions by reduc-
ing the average error of the April-July unimpaired river-flow
forecast made on April 1st. Engineers at California Department
of Water Resources create the unimpaired river flow forecasts
at the beginning of February, March, April, and May, the
engineers estimate that each forecast takes approximately a
total of 100 man hours. Each forecast includes all of the 30
river basins in California. The American River is one of these
river basins.

Our work focused on a sub-section of the Bulletin 120 for
the American River. We forecasted the April through July full
natural flow runoff of the American River measured at Folsom.
The April - July ”full natural flow” runoff is measured in acre-
feet. The measuring stations report their data in snow water
equivalent for the snow measurement stations or inches for the
rainfall measurement stations.

Issues with the Current Forecast Practices

The current practice uses regression equations to determine
the April thru July runoff forecasts for statewide river basins.
Regression formula variables include:
• October March Precipitation Index
• April July Precipitation Index
• High and Low Snow Indices
• Previous fall and spring runoff
• 50 year historic database (1956-2005)
The precipitation variables of the regression equation are

determined by calculating a precipitation index based on
yearly and monthly averages over a mix of stations repre-
senting the basin. Similarly, the snow pack variables of the
regression equation are determined by calculating a snow
index based on yearly and monthly averages over a mix of
stations representing the basin. In some cases, the basin is
split into a high elevation and low elevation snow pack index
to give ultimate consideration of basin snow.

Some of the issues with the current forecast practices are
bad snow water content data, over or under sampling of snow
water content (usually snow water content data and precip-
itation are both under sampled), bad or inaccurate reservoir
storage data, inaccurate flow data, inaccurate evaporation data.

Other issues are (a) the equations were made using the
entire data set. Therefore, some accuracy may be lost when a

http://cdec.water.ca.gov/cgi-progs/staMeta?station_id=AMF


Fig. 1. American River Watershed

general equation is used during a very wet or very dry year, (b)
there is no mechanical way to check the precipitation, snow,
or full natural flow data. This means there is not a mechanism
whereby a flag is put on data to alert us of a questionable value,
(c) there is no formal way to make an estimate for missing
or bad data, (d) for some rivers, the three main equations can
produce values that are not close to each other, hence it is hard
to get a feel for the true value and other methods are used.

A. Primary forecasting tool: Support Vector Machine using
Sequential Minimum Optimization

The dependent variable: April-July cumulative unimpaired
runoff.

The independent variables used
• Prior Year April-July Cumulative Unimpaired Runoff
• October-March Cumulative Unimpaired Runoff
• Snow Index (High Elevation)
• Snow Index (Low Elevation)
• October-March Precipitation Index
• April-June Precipitation Index.

B. Data Issues

Snow and Precipitation Index Issues:
• Snow course or precipitation station mix may be limited
• Lack of quality snow course measurements requires al-

ternate source data or re-measurement
• Harsh weather will often delay or prohibit snow course

data collection
• May have elevation or east-west bias
• May have out of basin station bias
• Data collection may not be thorough or have quality

assurance
• Missing stations cause unintentional biases

American River
April 1, 2008 Forecasts

April-July Unimpaired Runoff
HYDROLOGIC
RGN &
WATERSHED

Unimpaired Runoff in 1,000 Acre-Feet
HISTORICAL FORECAST

50 YR
Avg

Max of
Record

Min of
Record

Apr-Jul
Forecasts

Pct of
Avg

80% Prob.
Range

North Fork 262 716 43 180 69%
Middle Fork 522 1,406 100 390 75%
Silver Creek 173 386 37 130 75%
Below Folsom Dam 1,240 3,074 229 940 76% 660-1,590

Fig. 2. Bulletin 120, April 2008 Forecast

Resolution: Eliminate parameters that have missing or faulty
entries.

The rest of this paper is organized as follows: Section II
discusses the relevant learning algorithms and approach used,
related work and how our proposed approach differs from
them; Section III describes the dataset design and issues with
missing data values; Section IV presents the experimental
results; Section V compares our results with the forecasts
produced by the California Department of Water Resources;
Section VI gives a brief description of the tools used in our
models; Section VII suggests possible areas of improvement;
Finally Section VIII concludes the paper with remarks on
future work.

II. APPROACH AND LEARNING ALGORITHMS

We used monthly precipitation and snow data gathered from
10 precipitation monitoring stations and 28 snow monitoring
stations located in the American River basin. We also made
use of the historical full natural flow data for the American
River at the Folsom measurement station.

The data is from the California Department of Water
Resources, the precipitation/snow data is available on their
website at http://cdec.water.ca.gov. We formatted the raw CSV
data from the Department of Water Resources as an Attribute-
Relation File Format (ARFF) file.

With the data set of 222 input parameters from the 40
monitoring stations we then further narrowed down the data
to create each forecast.

Using the Machine Learning tool WEKA [2], we used
an ad-hoc method of trying different learning algorithms
and different parameters for each learning algorithm to find
the best algorithm and set of algorithm parameters. WEKA
(Waikato Environment for Knowledge Analysis) provides a
large toolbox of learning algorithms. Additionally WEKA
makes it easy to try individual learning algorithms and vary
the algorithm parameters to determine which set of parameters
yields the best results.

We tried several algorithms for creating river flow fore-
casts. In particular, we tried simple linear regression, neural
networks, an ensemble of neural networks, least median of
squares linear regression, and least median of squares linear
regression with bagging [1]. The best results were from using
SMOreg (Support Vector Machine with Sequential Minimum
Optimization) with a RBF kernel function. Version 3.6 of
WEKA was used for all the calculations. From our results we

http://cdec.water.ca.gov


Fig. 3. The soft margin loss setting for a linear SVM (from Scholkopf and
Smola, 2002)

cannot conclude that using SVM with Sequential Minimum
Optimization is the best algorithm. We can only conclude
that it is the best of the algorithms we tried with the specific
algorithm parameters we used and it outperforms the existing
forecasting methods..

A. Description of using SVM (Support Vector Machine) for
Function Estimation

Alex Smola and Bernhard Scholkopf have an excellent
tutorial [12] on using Support Vector Machines for function
estimation. We will go over only the relevant details for our
model.

The idea of a Support Vector Machine was initially de-
veloped in Russia in the 60’s by Vapnik and Lerner [13],
and Chervonenkis [14]. Vapnik further developed the field and
wrote the definitive book [15] on the subject.

Here we only cover the basics of SVM and how the algo-
rithm parameters we selected affected the learning process.

A SVM consists of a set of support vectors and a kernel
function. The support vectors are a set of vectors from the
training data. The support vectors together with the kernel
create the function approximation.

The SVM formulation for function estimation is as follows.
Suppose we are given training data

{(x1, y1), . . . , (x`, . . . , y`)} ⊂ X × R, where X = Rd. (1)

For the linear formulation of a support vector machine we
want to find a function, f(x) = 〈w, x〉 + b, that satisfies
Equation 2.

minimize
1

2
‖w‖2 + C

l∑
i

(ξi + ξ∗i)

subject to


yi − 〈w, xi〉 − b ≤ ε+ ξi

〈w, xi〉+ b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

(2)

Equation 2 is the formulation stated in Vapnik (1995) [15].
The non-linear formulation uses a kernel function instead

of, 〈·, ·〉, the inner product. For sake of brevity please refer
to Smola and Scholkopf’s tutorial [12] for the full exposition.
Briefly stated the relevant parameters are:

1) C, The complexity parameter.
2) kernel, The kernel to use.
3) regOptimizer, The specific learning algorithm used to

solve the optimization problem.

Some example kernels are 〈x, x′〉p, p ∈ N and e−
‖x−x′‖2

2·σ .
The specific regOptimizer we used is from Shevade, Keerthi,

et al. [16] and is based on the Sequential Minimum Optimiza-
tion (SMO) algorithm.

After disappointing results with a polynomial kernel we
tried a radial basis function (RBF) kernel and had very
satisfying results. We varied the complexity parameter, C,
and also the epsilon parameter for the regOptimizer (used for
the epsilon insensitive loss function). We did not try a full
exponential grid search of the parameter space, which could
give better results.

The SVM with SMO algorithm is named ”SMOreg” in
WEKA. The final output from SMOreg is of Equation 3 form.

10.0·k0+10.0·k1+· · ·−5.343220517106478∗k99+0.024 (3)

The k0, k1, . . . , k99 are the input vectors. To compute the
estimated full natural April-July natural flow of a given year
Equation 4 is used.

f(x) =

99∑
i=0

ai ·K(xi, x) + b, (4)

where {a0 = 10, a1 = 10, a2 = −10, · · · , a99 =
−5.343220517106478}, b = 0.024, the xi are the training
data, and

K(x, y) = e−γ·〈x−y,x−y〉
2

, γ = 0.01. (5)

Figure 4 shows the full set of support vector coefficients.
Equation 4 operates on the normalized input and the output
of equation 4 must be unnormalized to get the actual flow in
acre-feet. The Weka documenation on the SMOreg algorithm
implementation has details on the normalizeation process. In
particular the input values are normalized to the range [0, 1]
and to have a standard deviation of 1.

For an example of the input vectors xi (before normaliza-
tion) see Figure 5.

B. Related Work

Michaela Bray’s and Dawei Han’s 2004 paper [10] on using
SVM’s for river flow forecasting gives a detailed description
and analysis of the advantages and disadvantages of SVM’s.
Their paper used data from the Bird Creek basin of Oklahoma,
USA. The data was derived from 12 rain gauges in the basin
with a training period from October 1955 to September 1963
and a verification period from November 1972 to November
1974. Their paper goes into detail on the techniques they used
to optimize their results e.g. choice of kernel function. The
best results from SVM were slightly worse than the best results
from a transfer function model.

Behzada et al. in a 2009 paper [11] used SVM’s to do one-
day lead runoff flow prediction. They noted that SVM makes

http://weka.sourceforge.net/doc/weka/classifiers/functions/SMO.html


a0 = +10.000 a1 = +10.000 a2 = −10.000
a3 = +10.000 a4 = −10.000 a5 = +10.000
a6 = +9.582 a7 = −5.619 a8 = +3.652
a9 = −6.709 a10 = +10.000 a11 = +10.000
a12 = +10.000 a13 = +10.000 a14 = +10.000
a15 = −7.710 a16 = +10.000 a17 = −10.000
a18 = −0.737 a19 = −0.416 a20 = −5.020
a21 = +10.000 a22 = +10.000 a23 = −10.000
a24 = +10.000 a25 = +3.190 a26 = +7.902
a27 = +2.799 a28 = −10.000 a29 = −4.334
a30 = −10.000 a31 = −1.009 a32 = +10.000
a33 = −7.117 a34 = +10.000 a35 = −10.000
a36 = +3.354 a37 = +8.859 a38 = −10.000
a39 = −10.000 a40 = −8.760 a41 = +10.000
a42 = −10.000 a43 = −5.602 a44 = −3.824
a45 = −7.755 a46 = −10.000 a47 = +10.000
a48 = −0.236 a49 = +1.652 a50 = −3.034
a51 = +1.240 a52 = +10.000 a53 = −10.000
a54 = +10.000 a55 = −0.361 a56 = +10.000
a57 = +10.000 a58 = −2.028 a59 = −10.000
a60 = +5.498 a61 = −1.857 a62 = +4.263
a63 = −4.226 a64 = −1.374 a65 = −0.320
a66 = +8.607 a67 = −10.000 a68 = +5.564
a69 = −10.000 a70 = −4.404 a71 = −2.984
a72 = −10.000 a73 = −2.313 a74 = +1.626
a75 = −3.130 a76 = +10.000 a77 = −1.880
a78 = +6.721 a79 = −5.394 a80 = −0.500
a81 = +9.217 a82 = +3.958 a83 = +3.682
a84 = −4.202 a85 = −10.000 a86 = −2.692
a87 = −4.160 a88 = −10.000 a89 = +10.000
a90 = −5.987 a91 = −10.000 a92 = −9.393
a93 = +0.598 a94 = −1.016 a95 = −1.222
a96 = −3.100 a97 = +5.877 a98 = −2.066
a99 = −5.343 b = +0.024

Fig. 4. Support Vector Coefficients

use of a convex quadratic optimization problem; hence the
solution is unique and globally optimal. They demonstrated
one-day lead stream flow forecasting of Bakhtiyari River in
Iran using the local climate and rainfall data. Compared with
artificial neural network (ANN) and ANN integrated with
genetic algorithms (ANN-GA) models they saw improvements
in root mean squared error (RMSE) and squared correlation
coefficient (R2) by SVM over both ANN models. They
concluded that the prediction accuracy of SVM is at least as
good as that of the other models and in some cases better.

An interesting paper on using WEKA was Ozlem Terzi’s
”Monthly River Flow Forecasting by Data Mining Process”
[3], which complements our paper very well. He did use
SVM’s in his paper but like us he tried a large number
of algorithms using WEKA and analyzed the results. His
dataset consisted of monthly flow data from two stations and
monthly rainfall data from three measurement stations. He
used data for the years 1972 through 2002, which he separated

@relation ’AmericanRiv_Train’
@attribute CPT_RAIN_OCT numeric
@attribute CPT_RAIN_NOV numeric
@attribute CPT_RAIN_DEC numeric
@attribute CPT_RAIN_JAN numeric
@attribute CPT_RAIN_FEB numeric
@attribute CPT_RAIN_MAR numeric
@attribute CPT_RAIN_APR numeric
@attribute TAC_RAIN_OCT numeric
@attribute TAC_RAIN_NOV numeric
@attribute TAC_RAIN_DEC numeric
@attribute TAC_RAIN_JAN numeric
@attribute TAC_RAIN_FEB numeric
@attribute TAC_RAIN_MAR numeric
@attribute TAC_RAIN_APR numeric

...

@attribute APR_JUL_SUM_FNF numeric
@data

...
1.75,3.76,0.48,12.41,11.18,1.68,. . .

40630,316077,677762,430604,437786,1108933

Fig. 5. Monitoring Station Data

into 20% for testing and 80% for training. He analyzed
multilinear regression, multilayer perceptron, RBF network,
decision table, REP tree, KStar as possible forecast algorithms
and concluded that multilinear regression performed the best.

Our paper differs from the above related work in that
we use Smola/Scholkopf’s Sequential Minimal Optimization
algorithm. Michaela Bray’s and Dawei Han’s 2004 paper used
only twelve measurement sites whereas our dataset contains
40 measurement sites. Ozlem Terzi’s paper used WEKA, but
it includes data from only five sources. The most significant
difference between our work and Behzada, et al.’s 2009 paper
is they did one-day lead runoff flow prediction whereas our
predictions are for three month runoff flows.

III. DESIGN OF DATASETS

We focused on comparing our results with the current
forecasts and changed either the learning algorithm used or the
algorithm parameters. We spent a significant amount of time
filtering and narrowing down the dataset to exclude measuring
stations that had sparse data.

Our initial data set had 481 input parameters from 40
monitoring stations. Each rain monitoring station had input
parameters for October through September precipitation; simi-
larly the snow monitoring stations had input parameters for the
October through September snow water equivalent. As a side
note each water year runs from October through September,
which is why the data measurements are from October through
September instead of a calendar year. We removed input
parameters that had missing data. For example in our initial



data set one of the monitoring stations, CPF, had missing
data for every month except April. Hence we removed all of
the input parameters for CPF except the one for April. For
example we went from including

"CPF_SNOW_OCT,CPF_SNOW_NOV,
CPF_SNOW_DEC,CPF_SNOW_JAN,
CPF_SNOW_FEB,CPF_SNOW_MAR,
CPF_SNOW_APR,CPF_SNOW_MAY,
CPF_SNOW_JUN,CPF_SNOW_JUL,
CPF_SNOW_AUG,CPF_SNOW_SEP"

as input parameters to only including ”CPF SNOW APR” as
an input parameter. This filtering of the data set resulted in
222 input parameters.

Please refer to Figure 6 for the complete list of monitoring
stations.

The data set contains 110 instances for the water years 1901
through 2010. For testing purposes we kept out the last 10
instances for the years 2001 through 2010 and trained on the
years 1901 through 2000.

With the data set of 222 input parameters from the 40
monitoring stations we then further narrowed down the data
to create each forecast.

IV. EXPERIMENTAL RESULTS

The single output parameter was the total unimpeded river
flow for the April-July period of the American River at the
Folsom measurement station, this data point is measured in
acre-feet. In Figure 7 we show the American River April-
July flow for 2001 through 2010. Figure 8 shows the cross
validation and correlation numbers.

V. PERFORMANCE EVALUATION AND COMPARISON

To evaluate our performance we compared the human en-
semble forecasts with the results of SMOreg and additionally
compared both with the actual river flows for the test years.

In 8 out of the 10 test years the SMOreg and human forecast
errors had the same sign e.g. in 2010 both the SMOreg and the
human forecast were low. Both the SMOreg forecasts and the
human ensemble forecasts predicated less extreme river flows
than the actual river flows. This is expected, since they are both
minimizing the RMSE. Two exceptions to this were the years
2007 and 2009. In 2007 the human ensemble forecasted less
extreme river flows than the actual river flow but the SMOreg
forecast was for a more extreme river flow than the actual river
flow. In 2009 the SMOreg forecast was for less extreme river
flow than the actual river flow but the human forecast was for
more extreme river flow than the actual river flow.

VI. DESCRIPTION OF DEVELOPMENT
TOOLS/METHODOLOGIES USED

For our learning algorithms we used WEKA. The data was
obtained from the Oracle database that the Department of
Water Resources maintains, which has the precipitation data
for the state of California. We extracted the relevant data using
SQL from the database and then used the CSV to ARFF
converter to convert it into an ARFF file.

Station Longitude Latitude Elv(ft)
CPT CAPLES LAKE 120.033 38.7 8000
TAC TAHOE CITY 120.133 39.167 6230
TKE TRUCKEE RS 120.183 39.333 6020
BYM BLUE CANYON 120.7 39.283 5280
LSP LAKE SPAULDING 120.633 39.317 5156
SSR SALT SPRINGS 120.219 38.498 3700
PCF PACIFIC HOUSE 120.5 38.765 3400
GRG GEORGETOWN RS 120.8 38.933 3001
FDD FIDDLETOWN 120.7 38.533 2160
PCV PLACERVILLE 120.82 38.7 1850
APH ALPHA 120.215 38.805 7600
CAP CAPLES LAKE 120.042 38.71 8000
CPF CARPENTER FLAT 120.643 39.303 5300
CC5 CASTLE CREEK 5 120.353 39.353 7400
CCO CISCO 120.543 39.303 5900
DRR DARRINGTON 120.053 38.825 7100
DNS DONNER SUMMIT 120.338 39.31 6900
HYS HUYSINK 120.527 39.282 6600
ABN LAKE AUDRAIN 120.037 38.82 7300
LLL LAKE LUCILLE 120.112 38.86 8200
SPD LAKE SPAULDING 120.642 39.317 5200
LCR LOST CORNER MTN 120.215 39.017 7500
LCP LOWER CARSON PS. 119.998 38.693 8400
LYN LYONS CREEK 120.243 38.812 6700
ONN ONION CREEK 120.358 39.275 6100
PHL PHILLIPS 120.072 38.818 6800
RBV ROBBS VALLEY 120.38 38.922 5600
RP1 RUBICON PEAK 1 120.142 38.992 8100
RP2 RUBICON PEAK 2 120.14 39.001 7500
SIL SILVER LAKE 120.118 38.678 7100
SXV SIXMILE VALLEY 120.6 39.315 5750
SQ2 SQUAW VALLEY 2 120.248 39.188 7700
STW STRAWBERRY 120.145 38.793 5700
TBC TALBOT CAMP 120.377 39.193 5750
TMF TAMARACK FLAT 120.103 38.807 6550
UCP UPPER CARSON PS. 119.983 38.695 8500
WBM WABENA MDS. 120.402 39.227 6300
WR2 WARD CREEK 2 120.225 39.142 7000
WRG WRIGHTS LAKE 120.233 38.847 6900

Fig. 6. Monitoring Stations

VII. CRITIQUE OF LEARNING ALGORITHMS USED

As noted in Section V, the forecasted river flows by SMOreg
were less extreme than the actual river flows. Ideally the
forecasted river flows would not be any more or less extreme
than the actual river flows. This is constrained by the fact that
the algorithm minimize the RMSE. Another area of possible
improvement is more accurate forecasts, of dry years. Dry
years necessitate water conservation, which means they should
have greater weight when optimizing the forecast model.

An area that is completely absent from our analysis is the
use of more qualitative data such as the La Nina or El Nino
conditions. Our methods used only data local to the American
River Basin and used no regional data such as the La Nina or



Year River Flow
2001 552,626
2002 973,817
2003 1,354,434
2004 632,159
2005 2,003,878
2006 2,622,387
2007 522,651
2008 674,287
2009 1,068,327
2010 1,486,780

Fig. 7. American River Unimpeded River Flow Apr-July (Acre-Feet)

Training Data
Correlation coefficient 0.923

Mean absolute error 130,554
Root mean squared error 269,111

Relative absolute error 23.85 %
Root relative squared error 39.21 %
Total Number of Instances 100

Cross Validation
Correlation coefficient 0.7875

Mean absolute error 303,946
Root mean squared error 430,722

Relative absolute error 54.77%
Root relative squared error 61.74%
Total Number of Instances 100

Fig. 8. Correlation & Cross Validation

Year Actual Predicted |Error|
2001 552,626 689,472 136,846
2002 973,817 1,028,681 54,864
2003 1,354,434 459,476 894,957
2004 632,159 713,440 81,281
2005 2,003,878 1,844,360 159,517
2006 2,622,387 2,315,193 307,193
2007 522,651 293,256 229,394
2008 674,287 800,080 125,793
2009 1,068,327 1,253,523 185,196
2010 1,486,780 1,023,649 463,130

Mean 1,189,135 1,042,113 263,817
Root mean squared error 355,856

Relative absolute error 48.65%
Root relative squared error 54.14%

Fig. 9. SMOreg Forecasts 2001-2010

El Nino ocean conditions. The addition of data representing
more general conditions than just the American River Basin
measurements could yield improved results.

Year Actual Predicted |Error|
2001 552,626 580,000 27,374
2002 973,817 1,100,000 126,183
2003 1,354,434 680,000 674,434
2004 632,159 940,000 307,841
2005 2,003,878 1,510,000 493,878
2006 2,622,387 1,630,000 992,387
2007 522,651 590,000 67,349
2008 674,287 940,000 265,713
2009 1,068,327 1,000,000 68,327
2010 1,486,780 1,050,000 436,780

Mean 1,189,135 1,002,000 346,026
Root mean squared error 454,492

Relative absolute error 63.82%
Root relative squared error 69.15%

Fig. 10. Human Forecasts 2001-2010

VIII. CONCLUSION

Our current results using SMOreg with a RBF kernel yield
a relative absolute error 48.65% versus 63.82% for the human
ensemble forecast. This is a significant improvement over the
current forecasts and yields a good model for producing future
forecasts.

Our most promising line of future work is to apply our
methods on other river basins in California and determine
if the SMOreg algorithm consistently yields better results
than the current forecast methods. A promising possibility is
adjusting the SMOreg parameters to optimize forecasts of dry
years, since with the current parameters the forecasts weight
wet and dry years equally, see Section VII.
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